From Emotion to Interaction: Lessons from Real Human-Machine-Dialogues

نویسندگان

  • Anton Batliner
  • Christian Hacker
  • Stefan Steidl
  • Elmar Nöth
  • Jürgen Haas
چکیده

The monitoring of emotional user states can help to assess the progress of human-machine-communication. If we look at specific databases, however, we are faced with several problems: users behave differently, even within one and the same setting, and some phenomena are sparse; thus it is not possible to model and classify them reliably. We exemplify these difficulties on the basis of SympaFly, a database with dialogues between users and a fully automatic speech dialogue telephone system for flight reservation and booking, and discuss possible remedies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Machine Learning and Citizen Science: Opportunities and Challenges of Human-Computer Interaction

Background and Aim: In processing large data, scientists have to perform the tedious task of analyzing hefty bulk of data. Machine learning techniques are a potential solution to this problem. In citizen science, human and artificial intelligence may be unified to facilitate this effort. Considering the ambiguities in machine performance and management of user-generated data, this paper aims to...

متن کامل

Real-Time Speech Emotion and Sentiment Recognition for Interactive Dialogue Systems

In this paper, we describe our approach of enabling an interactive dialogue system to recognize user emotion and sentiment in realtime. These modules allow otherwise conventional dialogue systems to have “empathy” and answer to the user while being aware of their emotion and intent. Emotion recognition from speech previously consists of feature engineering and machine learning where the first s...

متن کامل

Emotion Detection in Persian Text; A Machine Learning Model

This study aimed to develop a computational model for recognition of emotion in Persian text as a supervised machine learning problem. We considered Pluthchik emotion model as supervised learning criteria and Support Vector Machine (SVM) as baseline classifier. We also used NRC lexicon and contextual features as training data and components of the model. One hundred selected texts including pol...

متن کامل

Pitch pattern clustering of user utterances in human-machine dialogue

This paper argues about pitch pattern variations of user utterances in human-machine dialogue. For intelligent humanmachine communication, it is essential that machines understand prosodic characteristics which imply a user's various attitude, emotion and intention beyond vocabulary. Our original focus is on particularly distinct pitch patterns and their roles in the actual dialogues. We used h...

متن کامل

Towards Emotion Prediction in Spoken Tutoring Dialogues

Human tutors detect and respond to student emotional states, but current machine tutors do not. Our preliminary machine learning experiments involving transcription, emotion annotation and automatic feature extraction from our human-human spoken tutoring corpus indicate that the spoken tutoring system we are developing can be enhanced to automatically predict and adapt to student emotional states.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004